



|                               |                                                                                                                                                                                                                                                                                                                                                                                  | DPP – 1 (C                   | Circular Motion)                                                                                                                                                                                                                 |  |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Video Solution on Website:-   |                                                                                                                                                                                                                                                                                                                                                                                  | https://ph                   | ysicsaholics.com/home/courseDetails/39                                                                                                                                                                                           |  |  |  |  |
| Video Solution on YouTube:-   |                                                                                                                                                                                                                                                                                                                                                                                  | https://youtu.be/3KMTUMzkQjk |                                                                                                                                                                                                                                  |  |  |  |  |
| Written Solution on Website:- |                                                                                                                                                                                                                                                                                                                                                                                  | https://ph                   | ysicsaholics.com/note/notesDetalis/42                                                                                                                                                                                            |  |  |  |  |
| Q 1.                          | The angular velocity<br>when its angular acco<br>(a) 0.25 sec<br>(c) 1 sec                                                                                                                                                                                                                                                                                                       |                              | given by $\omega = 1.5t - 3t^2 + 2$ , Find the time<br>es zero:<br>(b) 0.5 sec<br>(d) 2 sec                                                                                                                                      |  |  |  |  |
| Q 2.                          | A wheel rotates with an angular acceleration given by $\alpha = 4at^3 - 3bt^2$ , where t is<br>the time and a and b are constants. If the wheel has initial angular speed $\omega_0$ , write the<br>equations for the angular speed:<br>(a) $\omega = \omega_0 + 4at^4 - 3bt^3$ (b) $\omega = \omega_0 + at^4 - bt^3$<br>(c) $\omega = at^4 - bt^3$ (d) $\omega = 4at^4 - 3bt^3$ |                              |                                                                                                                                                                                                                                  |  |  |  |  |
| Q 3.                          | A grinding wheel attained a velocity of 20 rad/sec in 5 sec starting from rest. Find the number of revolutions made by the wheel.<br>(a) $\pi/25$ revolutions<br>(b) $1/\pi$ revolutions<br>(c) $25/\pi$ revolutions<br>(d) none of these                                                                                                                                        |                              |                                                                                                                                                                                                                                  |  |  |  |  |
| Q 4.                          | The magnitude of dis<br>constant angular spec<br>(a) 2 a sin ωt<br>(c) 2a cos ωt                                                                                                                                                                                                                                                                                                 |                              | particle moving in a circle of radius with a<br>time t as:<br>(b) 2a sin (ωt/2)<br>(d) 2a cos (ωt/2)                                                                                                                             |  |  |  |  |
| Q 5.                          | The ratio of angular s<br>(a) 1 : 12<br>(c) 12 : 1                                                                                                                                                                                                                                                                                                                               | speeds of minut              | es hand and hour hand of a watch is -<br>(b) 6 : 1<br>(d) 1 : 6                                                                                                                                                                  |  |  |  |  |
| Q 6.                          | The angular displace<br>angular velocity (in r<br>(a) 27<br>(c) 15                                                                                                                                                                                                                                                                                                               |                              | le is given by $\theta = (t^3 + t^2 + t + 1)$ rad then, its<br>c is:<br>(b) 17<br>(d) 16                                                                                                                                         |  |  |  |  |
| Q 7.                          |                                                                                                                                                                                                                                                                                                                                                                                  | and 't' is in seco           | le performing circular motion is $\theta = \left(\frac{t^3}{60} - \frac{t}{4}\right)$<br>nd .Then the angular velocity and angular<br>5 s will be:<br>(b) 1 rad/s, 0.5 rad/s <sup>2</sup><br>(d) 0.1 rad/s, 5 rad/s <sup>2</sup> |  |  |  |  |
| Q 8.                          |                                                                                                                                                                                                                                                                                                                                                                                  |                              | f a particle if the angular velocity of a particle<br>velocity 1 rad/s in 2 seconds:<br>(b) $1 rad/s^2$                                                                                                                          |  |  |  |  |





(c) 1.5  $rad/s^2$ 

(d)  $2 rad/s^2$ 

- Q 9. A fan is rotating with angular velocity 100 rev/s. Then it switched off. It takes 5 min to stop. Find the total number of revolution made before the fan stops: (assume uniform angular retardation)
  (a) 9000 rev
  (b) 13000 rev
  - (c) 15000 rev (d) 4500 rev
- Q 10. The angular acceleration of a fan is  $\alpha = -\frac{3}{2}t^2$ . At the initial moment, its angular velocity  $\omega = 10$  rad/s and has an angular position of 1 rad. Choose the incorrect option:
  - (a) its angular velocity at t=1sec. is 9.5 rad/s
  - (b) its angular position at t=2 sec. is 5 rad
  - (c) its angular velocity at t=2 sec. is 6 rad/s
  - (d) its angular position at t=1 sec. is  $\frac{87}{8}$  rad

**Answer Key** 

| Q.1 a | Q.2 b | Q.3 c | Q.4 b | Q.5 c  |
|-------|-------|-------|-------|--------|
| Q.6 b | Q.7 b | Q.8 c | Q.9 c | Q.10 b |