

DPP - 1 (Circular Motion)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/39

https://youtu.be/3KMTUMzkQjk

https://physicsaholics.com/note/notesDetalis/42

Q 1. The angular velocity of a particle is given by $\omega=1.5 t-3 t^{2}+2$, Find the time when its angular acceleration becomes zero:
(a) 0.25 sec
(b) 0.5 sec
(c) 1 sec
(d) 2 sec

Q 2. A wheel rotates with an angular acceleration given by $\alpha=4 a t^{3}-3 b t^{2}$, where t is the time and a and b are constants. If the wheel has initial angular speed ω_{0}, write the equations for the angular speed:
(a) $\omega=\omega_{0}+4 a t^{4}-3 b t^{3}$
(b) $\omega=\omega_{0}+a t^{4}-b t^{3}$
(c) $\omega=a t^{4}-b t^{3}$
(d) $\omega=4 a t^{4}-3 b t^{3}$

Q 3. A grinding wheel attained a velocity of $20 \mathrm{rad} / \mathrm{sec}$ in 5 sec starting from rest. Find the number of revolutions made by the wheel.
(a) $\pi / 25$ revolutions
(b) $1 / \pi$ revolutions
(c) $25 / \pi$ revolutions
(d) none of these

Q 4. The magnitude of displacement of a particle moving in a cirele of radius with a constant angular speed ω varies with time t as:
(a) $2 a \sin \omega t$
(b) $2 \mathrm{a} \sin (\omega t / 2)$
(c) $2 a \cos \omega t$
(d) $2 \mathrm{a} \cos (\omega \mathrm{t} / 2)$

Q 5. The ratio of angular speeds of minutes hand and hour hand of a watch is -
(a) $1: 12$
(b) $6: 1$
(c) $12: 1$
(d) $1: 6$

Q 6. The angular displacement of a particle is given by $\theta=\left(t^{3}+t^{2}+t+1\right)$ rad then, its angular velocity (in rad/s) at $\mathrm{t}=2 \mathrm{sec}$ is:
(a) 27
(b) 17
(c) 15
(d) 16

Q 7. The angular displacement of a particle performing circular motion is $\theta=\left(\frac{t^{3}}{60}-\frac{t}{4}\right)$ where θ is in radian and ' t ' is in second. Then the angular velocity and angular acceleration of particle at the end of 5 s will be:
(a) $1 \mathrm{rad} / \mathrm{s}, 5 \mathrm{rad} / \mathrm{s}^{2}$
(b) $1 \mathrm{rad} / \mathrm{s}, 0.5 \mathrm{rad} / \mathrm{s}^{2}$
(c) $5 \mathrm{rad} / \mathrm{s}, 1 \mathrm{rad} / \mathrm{s}^{2}$
(d) $0.1 \mathrm{rad} / \mathrm{s}, 5 \mathrm{rad} / \mathrm{s}^{2}$

Q 8. What is the angular acceleration of a particle if the angular velocity of a particle becomes 4 times of its initial angular velocity $1 \mathrm{rad} / \mathrm{s}$ in 2 seconds:
(a) $0.5 \mathrm{rad} / \mathrm{s}^{2}$
(b) $1 \mathrm{rad} / \mathrm{s}^{2}$
(c) $1.5 \mathrm{rad} / \mathrm{s}^{2}$
(d) $2 \mathrm{rad} / \mathrm{s}^{2}$

Q 9. A fan is rotating with angular velocity $100 \mathrm{rev} / \mathrm{s}$. Then it switched off. It takes 5 min to stop. Find the total number of revolution made before the fan stops: (assume uniform angular retardation)
(a) 9000 rev
(b) 13000 rev
(c) 15000 rev
(d) 4500 rev

Q 10. The angular acceleration of a fan is $\alpha=-\frac{3}{2} t^{2}$. At the initial moment, its angular velocity $\omega=10 \mathrm{rad} / \mathrm{s}$ and has an angular position of 1 rad . Choose the incorrect option:
(a) its angular velocity at $\mathrm{t}=1 \mathrm{sec}$. is $9.5 \mathrm{rad} / \mathrm{s}$
(b) its angular position at $\mathrm{t}=2 \mathrm{sec}$. is 5 rad
(c) its angular velocity at $\mathrm{t}=2 \mathrm{sec}$. is $6 \mathrm{rad} / \mathrm{s}$
(d) its angular position at $\mathrm{t}=1 \mathrm{sec}$. is $\frac{87}{8} \mathrm{rad}$

Answer Key

| Q. 1 | a | Q. 2 | b | Q. 3 | c | Q. 4 | b | Q. 5 | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. 6 | b | Q. 7 | b | Q. 8 | c | Q. 9 | c | $\mathbf{Q . 1 0}$ | b |

